计算机书籍控

R语言编程艺术

R是一种用于统计计算与做图的开源软件,同时也是一种编程语言,它广泛应用于企业和学术界的数据分析领域,正在成为最通用的语言之一。由于近几年数据挖掘、大数据等概念的走红,R也越来越多地被人关注。截至本文完成之日,CRAN(http://cran。r-project。org/)上共有4383个包,涉及统计、化学、经济、生物、医学、心理、社会学等各个学科。不同类型的公司,比如Google、辉瑞、默克、美国银行、洲际酒店集团和壳牌公司都在使用它,同时以S语言环境为基础的R语言由于其鲜明的特色,一出现就受到了统计专业人士的青睐,成为国外大学里相当标准的统计软件。

目录


译者序
前言
致谢
第1章 快速入门
1.1 怎样运行R
1.1.1 交互模式
1.1.2 批处理模式
1.2 第一个R会话
1.3 函数入门
1.3.1 变量的作用域
1.3.2 默认参数
1.4 R语言中一些重要的数据结构
1.4.1 向量,R语言中的战斗机
1.4.2 字符串
1.4.3 矩阵
1.4.4 列表
1.4.5 数据框
1.4.6 类
1.5 扩展案例:考试成绩的回归分析
1.6 启动和关闭R
1.7 获取帮助
1.7.1 help()函数
1.7.2 example()函数
1.7.3 如果你不太清楚要查找什么
1.7.4 其他主题的帮助
1.7.5 批处理模式的帮助
1.7.6 互联网资源
第2章 向量
2.1 标量、向量、数组与矩阵
2.1.1 添加或删除向量元素
2.1.2 获取向量长度
2.1.3 作为向量的矩阵和数组
2.2 声明
2.3 循环补齐
2.4 常用的向量运算
2.4.1 向量运算和逻辑运算
2.4.2 向量索引
2.4.3 用:运算符创建向量
2.4.4 使用seq()创建向量
2.4.5 使用rep()重复向量常数
2.5 使用all()和any()
2.5.1 扩展案例:寻找连续出现1的游程
2.5.2 扩展案例:预测离散值时间序列
2.6 向量化运算符
2.6.1 向量输入,向量输出
2.6.2 向量输入,矩阵输出
2.7 NA与NULL值
2.7.1 NA的使用
2.7.2 NULL的使用
2.8 筛选
2.8.1 生成筛选索引
2.8.2 使用subset()函数筛选
2.8.3 选择函数which()
2.9 向量化的ifelse()函数
2.9.1 扩展案例:度量相关性
2.9.2 扩展案例:对鲍鱼数据集重新编码
2.10 测试向量相等
2.11 向量元素的名称
2.12 关于c()的更多内容
第3章 矩阵和数组
3.1 创建矩阵
3.2 一般矩阵运算
3.2.1 线性代数运算
3.2.2 矩阵索引
3.2.3 扩展案例:图像操作
3.2.4 矩阵元素筛选
3.2.5 扩展案例:生成协方差矩阵
3.3 对矩阵的行和列调用函数
3.3.1 使用apply()函数
3.3.2 扩展案例:寻找异常值
3.4 增加或删除矩阵的行或列
3.4.1 改变矩阵的大小
3.4.2 扩展案例:找到图中距离最近的一对端点
3.5 向量与矩阵的差异
3.6 避免意外降维
3.7 矩阵的行和列的命名问题
3.8 高维数组
第4章 列表
4.1 创建列表
4.2 列表的常规操作
4.2.1 列表索引
4.2.2 增加或删除列表元素
4.2.3 获取列表长度
4.2.4 扩展案例:文本词汇索引
4.3 访问列表元素和值
4.4 在列表上使用apply系列函数
4.4.1 lapply()和sapply()的使用
4.4.2 扩展案例:文本词汇索引(续)
4.4.3 扩展案例:鲍鱼数据
4.5 递归型列表
……
第5章 数据框
第6章 因子和表
第7章 R语言编程结构
第8章 数学运算与模拟
第9章 面向对象的编程
第10章 输入与输出
第11章 字符串操作
第12章 绘图
第13章 调试
第14章 性能提升:速度和内存
第15章 R与其他语言的接口
第16章 R语言并行计算
附录A 安装R
附录B 安装和使用包

书籍下载

免费下载

正版书籍

R语言编程艺术